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DCS/CSCI 2350:
Social & Economic
Networks

How are networks formed in real
world?
Modeling Networks

Mohammad T. Irfan

Reading

* Newman'’s Networks, Ch 12 (Canvas)
* Erdos-Renyi random graphs

* Selected topics: Chapters 1, 4, 5 of Jackson’s

book (Canvas)
* Watts-Strogatz and preferential attachment

* Optional: Chapters 3, 4 of Watts’s Six Degrees
book (for behind the scene)
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Why model networks?

* How are networks formed?

* Effect of a network
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Why random
network models?

Why randomization?

* First attempt -> richer models

* Powerful!

* An ensemble of networks, not just one network
* Can capture real-world network properties

* Context-free
* Computationally tractable




Prelude

» Power-law degree distribution, p, = C k*

* (Puzzle 2)
Max possible # of edges = n(n-1)/2 =1C,

. (1) =rC,=n!/ (K'(n-k)!)

Erdos-Renyi random graphs
(or random graphs)

* Static
* Given n nodes (constant)

* Variant |
* Inputs: number of nodes n and number of
edges m
» Create m edges uniformly at random out g:izgzszs)ible#ofedges:
of "C, total possible edges n(n-1/2 = "Cs
* Variant Il
* Inputs: number of nodes n and probability
of forming an edge = p

10/23/23



Properties of Erdos-Renyi graphs

* Every simple graph is possible!

* How can we say something regarding properties?
1. Estimate the probability of a property
2. Limiting behavior: n = infinity

10
Properties of Erdos-Renyi graphs
. Degree distribution » Power-law degree distribution,
pk=Ck*
» (Puzzle 2)
* Clustering coefficient xzﬁ‘)’/";iﬁ;g# of edges =
» (3) =Ci="Cy = nl/[k!(n-k)!]
* Small-world effect
* Giant component
11
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Degree distribution

* px = €° ck/ k! [Poisson distribution]

* Here, mean degree ¢ = p(n-1)
[AKA average deg. or expected deg.]

» Power-law degree distribution,
pxr=Ck*

> (Puzzle 2) 4 '
Max possible # of edges =

n(n-1)2 ="C,
> (%) ="Ci="Ci = nl/[k!(n-k)!]
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Derivation (optional)
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High-school relationships
(Bearman et al, 2004)
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Random graph with p =0.02
o e e 4
16
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Frequency

0.35 .

Degree distribution: p = 0.02

Approximation by Poisson distribution
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\ Actual degree-distribution of the

\\ real-world network is NOT
\ shown here!
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High-school friendships
(Currarini et al, 2007)

18
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Random graph with p = 0.08
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Degree distribution: p = 0.08

Degree Distribution p=.08
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Plotting Erdos-Renyi degree
distribution
¥ WolframAlpha s * Plug in Poisson
: distribution
plot exp(-2)*2*k/k! fork = 0 to 10 % 8
* Expected degree, c=2
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Erdos-Renvi:
Giant component

0
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Phase transition & giant comp (GC)

Let q fraction of nodes be in the GC:
Fraction of nodes outside of the GC = 1-q
Prob of finding a node outside of the GC irrespective
of its degree = right hand side below
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Experimental solution:
GC emerges whenc>1

23

Phase transition  plot [q, 1-exp(-0.5%q), 1-exp(-1*q), 1-exp(-1.5%q)], g=0 to 1

& giant comp. WolframAlpha.com
q
1=e~95¢2
lot Oto1l
= 1-e™9
1= c—].Sq
*g=1-e™
* X-axis is q 10}

* Y-axisis 1 —e™ osf
* Intersection with 45 _t
line solves the equation

04r

* Giant component
emerges whenc>1 oizh

24
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Giant component:
Netlogo experiments

1. Prof. Irfan’s program:
https://mtirfan.com/Erdos-Renyi.html

2. Netlogo -> Models Library ->
Networks -> Giant Component

Erdos-Renvi:
Clustering coefficient

n ax
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https://mtirfan.com/Erdos-Renyi.html
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Erdos-Renyi:
Small-world property

s

Properties of Erdos-Renyi graphs

* Degree distribution
* Giant component

* Clustering coefficient

o gy

* Small-world effect

28
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Question

* How to create random graphs that capture the
real-world clustering properties?

30
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-dom-graph limit. For this simple model, one surprising result is that on
average, the first five random rewirings reduce the average path length

of the network by one-half, regardless of the size of the network. The big—

Duncan Watts, Six Degrees, pg. 89
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dom-graphtimit. For this simple model, one surprising result is that on
average, the first five random rewirings reduce the average path length
of the network by one-half, regardless of the size of the network. The big-
ger the network, the greater the effect of each individual random link so
the impact of adding links becomes effectively independent of size. The
law of diminishing returns, however, is just as striking. A further 50
percent reduction (so that now the average path length is at one-fourth
of its original value) requires roughly another fifty links—roughly ten
times as many as for the first reduction and for only half as much over-

Duncan Watts, Six Degrees, pg. 89
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Watts-Strogatz small-world model
(1998)

* Degree distribution

* Clustering coefficient 'é
* Giant component ‘&

* Small-world effect

33
Question
* How to create random graphs that capture the
real-world degree-distribution?
34
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Examples

* Pareto (1890s)
* Wealth distribution, city sizes

* Herbert Simon (1955):
* System grows over time with new objects entering
* Existing objects grow proportional to their size
* “The rich gets richer faster than the poor”

* Derek Price (1965)

* Citation network: # of citations of a paper is
proportional to the # of citations it has

35

Barabasi-Albert Preferential-attachment model (1999)

* Nodes are born over time (only one node at
atime). DOB: {0, 1, 2, ..., t, ...}
* Degree of node i at time t: d(t)

* Upon birth, a node forms M edges
* Pr(attaching to node i) is proportional to d;(t)

M is the only model
parameter!

36
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Preferential attachment

Degree distribution is power law!

(derivation)
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Barabasi-Albert Preferential-
attachment model (1999)

* Degree distribution 'é

* Clustering coefficient ?

* Giant component

* Small-world effect ‘@

38
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